Blending Biology and Computation to understand human diseases.

Who we are

Welcome to the webpage of the Human Systems Biology group in the National Institute for Genomic Medicine at Mexico City, INMEGEN. Our group is interdisciplinary and have the objective to develop a systems biology framework to analyze mainly human diseases and metabolic phenotype in microorganisms through the use of computational models and high-throughput technologies. Currently, our laboratory focuses on the analysis of metabolic alterations in cancer cells by the implementation of genome scale metabolic reconstructions and assess the predictions in terms of experimental data at different scales.

Latest News

Biological Physics Mexico City 2017

from 17-05-2017 to 19-05-2017

Frontiers at the interface of Physics, Math and Biology. This conference (the second in a series) is intended as an international, multidisciplinary scientific forum to discuss the latest developments in biological physics (including proteins, peptides and enzymes, among many other topics). The conference is expected to boost a new paradigm of interdisciplinary approaches converging into specific problems in biological physics. Hence, the conference audience is broad: We aim to attract the attention of biologists as well as biochemists, organic chemists, engineers, computational scientists, physicists, and mathematicians.

Latest Publication

Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues


Luis Olivarez-Quiroz and Osbaldo Resendis-Antonio

This book presents cutting-edge research on the use of physical and mathematical formalisms to model and quantitatively analyze biological phenomena ranging from microscopic to macroscopic systems. The systems discussed in this compilation cover protein folding pathways, gene regulation in prostate cancer, quorum sensing in bacteria to mathematical and physical descriptions to analyze anomalous diffusion in patchy environments and the physical mechanisms that drive active motion in large sets of particles, both fundamental descriptions that can be applied to different phenomena in biology.