Blending Biology and Computation to understand human diseases.

Who we are

Welcome to the webpage of the Human Systems Biology group in the National Institute for Genomic Medicine at Mexico City, INMEGEN. Our group is interdisciplinary and have the objective to develop a systems biology framework to analyze mainly human diseases and metabolic phenotype in microorganisms through the use of computational models and high-throughput technologies. Currently, our laboratory focuses on the analysis of metabolic alterations in cancer cells by the implementation of genome scale metabolic reconstructions and assess the predictions in terms of experimental data at different scales.

Latest News

Biological Physics Mexico City 2019

from 06-09-2019 to 04-09-2019

Frontier Science at the Intersection of Physics, Math and Biology The BioPhys Mexico City 2019 conference, the third in a biennial series, is intended as an international, multidisciplinary scientific forum to discuss the latest developments in biological physics, including experimental, theoretical and computational methods, from a single molecule perspective to complex multi-component environments. The conference is expected to boost the new paradigm of interdisciplinary approaches converging into specific problems in biological physics.

Latest Publication

On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers

Frontiers in Immunology 2021

Aarón Vázquez-Jiménez, Ugo Avila-Ponce De León, Meztli Matadamas-Guzman, Erick Andrés Muciño-Olmos, Estrella Martínez-López, Thelma Escobedo-Tapia and Osbaldo Resendis-Antonio

COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses.